《实分析》是美国数学家H.L.罗伊登(Halsey L. Royden)所著的数学教材,2010年8月由
机械工业出版社出版,被
斯坦福大学、
哈佛大学等用作实分析课程教材。该书是《Real Analysis》第4版(2007年)的英文影印版,ISBN为9787111313052,共505页,定价49.00元,属于“经典原版书库”丛书。在豆瓣上,该书评分为8.7分(截至2023年9月)。
内容简介
《实分析》(Real Analysis,第4版)是
机械工业出版社出版的经典教材,包括英文影印版(2010年)、中文译本(2019年)及英文原版(2020年)等多个版本,是实分析课程的优秀教材,被国外众多著名大学(如斯坦福大学、哈佛大学等)采用。全书分为三部分:第一部分讨论一元实变量函数的Lebesgue测度与Lebesgue积分,包括一致可积分性和Vitali收敛定理等内容;第二部分讨论抽象空间——
拓扑空间、度量空间、Banach空间以及Hilbert空间,新增了Hilbert空间算子章节;第三部分讨论一般
测度空间上的积分,涵盖
Lp空间的对偶表示及弱序列紧性。书中不仅包含数学定理和定义,而且还提出了富有启发性的问题,以便读者更深入地理解书中内容。与前一版相比,第4版新增了50%的习题,证明了一些基本结果,包括Egoroff定理和
Urysohn引理,并正式引入了Borel-Cantelli引理、Chebychev不等式、快速Cauchy序列等概念。该书是实分析、
测度论、
泛函分析等领域的重要教材与参考书。
出版信息
2010年8月由
机械工业出版社出版英文原版第4版,收录于“经典原版书库”,ISBN为9787111313052,原作名《Real Analysis (4th ed., 2007)》。
2019年8月机械工业出版社出版中文译本《实分析(原书第4版)》,译者叶培新、李雪华,收录于“华章数学译丛”,ISBN为9787111630845。
2020年4月
机械工业出版社出版英文影印版《实分析(英文版·原书第4版)》,收录于“华章数学原版精品系列”,
ISBN为9787111646655。
作者简介
本书的主要作者为美国数学家H. L. Royden(哈尔西·罗伊登)。其经典著作《实分析》前三版已帮助了几代学习数学分析的学生。本书的第4版由Patrick R. Fitzpatrick(帕特里克·R·菲茨帕特里克)参与修订。中文译本由
叶培新、李雪华翻译。
作品评价与特点
《实分析》是实分析课程的优秀教材,被国外众多著名大学如
斯坦福大学、
哈佛大学等采用。第4版新增了50%的习题,证明了Egoroff定理和
Urysohn引理等基本结果,并正式引入了Borel-Cantelli引理、Chebychev不等式等概念。
该书在豆瓣上的评分为8.7分,基于26人评价。学界对该书有不同观点,有观点指出部分定理的证明可能不够简洁,同时也有观点认为这种处理方式提供了灵活性。
图书目录
Lebesgue Integration for Functions of a Single Real Variable
Preliminaries on Sets, Mappings, and Relations
Unions and Intersections of Sets
Equivalence Relations, the Axiom of Choice, and Zorn's Lemma
1 The Real Numbers: Sets. Sequences, and Functions
The Field, Positivity, and Completeness Axioms
The Natural and Rational Numbers
Countable and Uncountable Sets
Open Sets, Closed Sets, and Borel Sets of Real Numbers
Sequences of Real Numbers
Continuous Real-Valued Functions of a Real Variable
2 Lebesgne Measure
Introduction
Lebesgue Outer Measure
The o'-Algebra of Lebesgue Measurable Sets
Outer and Inner Approximation of Lebesgue Measurable Sets
Countable Additivity, Continuity, and the Borel-Cantelli Lemma
Noumeasurable Sets
The Cantor Set and the Cantor Lebesgue Function
3 LebesgRe Measurable Functions
Sums, Products, and Compositions
Sequential
Pointwise Limits and Simple Approximation
Littlewood's Three Principles, Egoroff's Theorem, and Lusin's Theorem
4 Lebesgue Integration
The Riemann Integral
The Lebesgue Integral of a Bounded Measurable Function over a Set of
Finite Measure
The Lebesgue Integral of a Measurable Nonnegative Function
The General Lebesgue Integral
Countable Additivity and Continuity of Integration
Uniform Integrability: The Vifali Convergence Theorem
viii Contents
5 Lebusgue Integration: Fm'ther Topics
Uniform Integrability and Tightness: A General Vitali Convergence Theorem
Convergence in Measure
Characterizations of Riemaun and Lebesgue Integrability
6 Differentiation and Integration
Continuity of Monotone Functions
Differentiability of Monotone Functions: Lebesgue's Theorem
Functions of Bounded Variation: Jordan's Theorem
Absolutely Continuous Functions
Integrating Derivatives: Differentiating Indefinite Integrals
Convex Function
7 The Lp Spaces: Completeness and Appro~umation
Nor/ned Linear Spaces
The Inequalities of Young, HOlder, and Minkowski
Lv Is Complete: The Riesz-Fiseher Theorem
Approximation and Separability
8 The LP Spacesc Deailty and Weak Convergence
The Riesz Representation for the Dual of
Weak Sequential Convergence in Lv
Weak Sequential Compactness
The Minimization of Convex Functionals
II Abstract Spaces: Metric, Topological, Banach, and Hiibert Spaces
9. Metric Spaces: General Properties
Examples of Metric Spaces
Open Sets, Closed Sets, and Convergent Sequences
Continuous Mappings Between Metric Spaces
Complete Metric Spaces
Compact Metric Spaces
Separable Metric Spaces
10 Metric Spaces: Three Fundamental Thanreess
The Arzelb.-Ascoli Theorem
The Baire Category Theorem
The Banaeh Contraction Principle
H Topological Spaces: General Properties
Open Sets, Closed Sets, Bases, and Subbases
The Separation Properties
Countability and Separability
Continuous Mappings Between Topological Spaces
Compact Topological Spaces
Connected Topological Spaces
12 Topological Spaces: Three Fundamental Theorems
Urysohn's Lemma and the Tietze Extension Theorem
The Tychonoff Product Theorem
The Stone-Weierstrass Theorem
13 Continuous Linear Operators Between Bausch Spaces
Normed Linear Spaces
Linear Operators
Compactness Lost: Infinite Dimensional Normod Linear Spaces
The Open Mapping and Closed Graph Theorems
The Uniform Boundedness Principle
14 Duality for Normed Iinear Spaces
Linear Ftmctionals, Bounded Linear Functionals, and Weak Topologies
The Hahn-Banach Theorem
Reflexive Banach Spaces and Weak Sequential Convergence
Locally Convex Topological Vector Spaces
The Separation of Convex Sets and Mazur's Theorem
The Krein-Miiman Theorem
15 Compactness Regained: The Weak Topology
Alaoglu's Extension of Helley's Theorem
Reflexivity and Weak Compactness: Kakutani's Theorem
Compactness and Weak Sequential Compactness: The Eberlein-mulian
Theorem
Memzability of Weak Topologies
16 Continuous Linear Operators on Hilbert Spaces
The Inner Product and Orthogonality
The Dual Space and Weak Sequential Convergence
Bessers Inequality and Orthonormal Bases
bAdjoints and Symmetry for Linear Operators
Compact Operators
The Hilbert-Schmidt Theorem
The Riesz-Schauder Theorem: Characterization of Fredholm Operators
Measure and Integration: General Theory
17 General Measure Spaces: Their Propertles and Construction
Measures and Measurable Sets
Signed Measures: The Hahn and Jordan Decompositions
The Caratheodory Measure Induced by an Outer Measure
18 Integration Oeneral Measure Spaces
19 Gengral L Spaces:Completeness,Duality and Weak Convergence
20 The Construciton of Particular Measures
21 Measure and Topbogy
22 Invariant Measures
Bibiiography
index